$$
y=c^{x}
$$

Complete the table of values for $y=c^{x}$ when $c=2$. Express y values in fraction form.
Then plot the points accurately on the grid provided. Use an appropriate scale on the y-axis.

x	y
-5	
-4	
-3	
-2	
-1	
0	
1	
2	
3	
4	
5	

Use your calculator to graph $y=2^{x}$ using this window:
$\mathrm{x}_{\text {min }}=-5$
$\mathrm{x}_{\text {max }}=5$
$\mathrm{X}_{\mathrm{scl}}=1$
$y_{\text {min }}=-2$
$y_{\text {max }}=34$
$\mathrm{y}_{\mathrm{scl}}=2$

Use the graph on your calculator to help you complete the graph you started above.
$y=2^{x}$ is an exponential function. Write down the characteristics of the graph.
Horizontal asymptote: \qquad
Domain: \qquad

Range: \qquad
x-intercept: \qquad
y-intercept: \qquad

Now try to graph a few different exponential functions on your calculator:

1. Use values of $c>2$. Summarize.
2. Use values of $1<c<2$. Summarize.
3. Use values of $0<c<1$. Summarize.
4. What if $c=1$ or $c=0$?
5. What if $c<0$? Explore specifically $y=(-2)^{x}$. Check out the table of values too. Use $\Delta \mathrm{Tbl}=0.5$. Take note when x is even, odd, or rational such as $1 / 2$. Explain.
6. Graph $y=2^{-x}$. Which case above is equivalent? Why?
7. Graph $y=-2^{x}$. Notice all of the main characteristics.
8. Certain exponential functions represent growth. What values for c are these?
9. Certain exponential functions represent decay. What values for c are these?

Go through example 3 on page 340-341. Read Key Ideas on page 342.

